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Abstract
We define the oscillator and Coulomb systems on four-dimensional spaces with
U(2)-invariant Kähler metric and perform their Hamiltonian reduction to the
three-dimensional oscillator and Coulomb systems specified by the presence
of Dirac monopoles. We find the Kähler spaces with conic singularity, where
the oscillator and Coulomb systems on three-dimensional sphere and two-sheet
hyperboloid originate. Then we construct the superintegrable oscillator system
on three-dimensional sphere and hyperboloid, coupled to a monopole, and find
their four-dimensional origins. In the latter case the metric of configuration
space is a non-Kähler one. Finally, we extend these results to the family of
Kähler spaces with conic singularities.

PACS numbers: 03.65.−w, 11.30.Pb

To the memory of Professor Valery Ter-Antonyan

1. Introduction

The oscillator and Coulomb systems play a distinguished role in theoretical and mathematical
physics due to their overcomplete symmetry group. The wide number of hidden symmetries
provides these systems with unique properties, e.g., closed classical trajectories, the degenerate
quantum–mechanical energy spectrum, the separability of variables in a few coordinate
systems. The overcomplete symmetry allows us to preserve their exact solvability even
after some deformation of the potential breaking the initial symmetry, or, at least, to simplify
the perturbative calculations. The reduction of these systems to low dimensions allows one to
construct new integrable systems with hidden symmetries [1].

There exist non-trivial generalizations of the oscillator and Coulomb systems on the sphere
and the two-sheet hyperboloid (pseudosphere) [2] given by the potentials

VCoulomb = − γ

r0

xd+1

|x| Vosc = ω2r2
0

2

x2

x2
d+1

. (1.1)
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Here x, xd+1 are the (pseudo)Euclidean coordinates of the ambient space R
d+1(Rd.1):

εx2 + x2
d+1 = r2

0 , with ε = +1 for the sphere, ε = −1 for the hyperboloid (for a review,
see [4]).

The potential of the oscillator has also been generalized for the complex projective space
CPN, N > 1. That is defined as follows [3]:

Vosc = ω2gāb∂āK∂bK (1.2)

where K(z, z̄) = log(1 + zz̄) is the Kähler potential of CPN.
The generalized systems preserve the property of ‘maximal superintegrability’ of the

conventional oscillator and Coulomb systems. They have two-dimensional (2d − 1)

functionally independent constants of motion (here d is the dimension of configuration space).
The definition of the oscillator potential (1.2) tells us to define the Coulomb potential on CPN

as follows:

VCoulomb = − γ√
gāb∂āK∂bK

. (1.3)

In some cases one can establish the non-trivial relation between oscillator and Coulomb
systems: the (p + 1)-dimensional Coulomb problem can be obtained from the 2p-dimensional
oscillator by the so-called Levi-Civita (or Bohlin) (p = 1), Kustaanheimo–Stiefel (p = 2) and
Hurwitz transformations (p = 4), when p = 1, 2, 4 [5], corresponding to the reduction by the
actions of Z2, U(1) and SU(2) groups, respectively. To be more precise, these transformations
connect the energy levels of oscillators with the one-parametric families of Coulomb-like
systems, specified by the presence of a magnetic flux for p = 1 [6]; by a Dirac monopole for
p = 2 (the MIC–Kepler system)[7]; and by a Yang monopole for p = 4 [8] (for a review, see
[9]). Among these systems the most elegant (and important) one is, probably, the MIC–Kepler
system, describing the relative motion of two Dirac dyons. It is also relevant to the scattering
of two well-separated BPS monopoles and dyons. The latter system was considered in a well-
known paper by Gibbons and Manton [10], where the existence of a hidden Coulomb-like
symmetry was established. Nowadays the MIC–Kepler system is studied to no less extent
than the Coulomb system [11].

To relate the four-dimensional oscillator with the MIC–Kepler system, we have to perform
its Hamiltonian reduction by the action of the U(1) group which leads the canonical symplectic
structure on T ∗

C
2 to the twisted symplectic structure on T ∗

R
3 specified by the presence of a

monopole magnetic field

�can = dz ∧ dπ + dz̄ ∧ dπ̄ → �red = dx ∧ dp + s
x × dx × dx

|x|3 . (1.4)

Here s denotes the value of the generator of the Hamiltonian action

s = J0

2
J0 = i(zπ − z̄π̄ ). (1.5)

The reduced coordinates are connected with the initial one as follows:

x = zσz̄ p = zσπ + π̄σz̄

2zz̄
(1.6)

where σ denote Pauli matrices.
Upon this reduction, the energy surface of the four-dimensional oscillator yields that

of the MIC–Kepler system. Applying this reduction to the oscillator on a four-dimensional
sphere/hyperboloid and on the complex projective space CP2 we shall get the MIC–Kepler
system on a three-dimensional hyperboloid [3, 12].

The appearance, in the reduced system, of the monopole field is due to Hamiltonian
reduction: that corresponds to the compactification of the spatial degree of freedom in the
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circle, which generates the magnetic charge. So, the above reduction could be used for the
construction of the three-dimensional systems with the monopole from the four-dimensional
systems. Vice versa, one can try to construct the superintegrable four-dimensional system
(without monopole) by lifting the given three-dimensional superintegrable system.

In the present paper we analyse the following question: whether the maximally
superintegrable systems on four-dimensional U(2)-invariant Kähler spaces, whose reductions
yield the (superintegrable) three-dimensional oscillator and Coulomb systems with monopoles,
including the systems on the configurational spaces with non-constant curvature, exist.

For this purpose we reduce the Hamiltonian system on the four-dimensional space
equipped with U(2)-invariant Kähler metric to the system on three-dimensional conformal-flat
space (see section 2). We find that the oscillator and Coulomb systems on the three-dimensional
space, sphere and hyperboloid are originated on the four-dimensional oscillator and Coulomb
systems on some Kähler spaces with conic singularity, so that (1.2) and (1.3) give us the well-
defined generalizations of the oscillator and Coulomb potentials on Kähler spaces. However, in
the presence of a Dirac monopole field that arises due to Hamiltonian reduction, the trajectories
of the three-dimensional systems become unclosed. Hence, in general, these systems are
not superintegrable. On the other hand, one can define the ‘maximally superintegrable’
generalization of the three-dimensional oscillator with a Dirac monopole, which originates in
the four-dimensional system with non-Kähler metrics (see section 3). We also find the family
of superintegrable four-dimensional oscillators, which yields the ‘maximally superintegrable’
oscillator with monopoles, on the three-dimensional spaces with non-constant curvature
(see section 4).

2. Three-dimensional systems with monopoles from U (2)-invariant Kähler spaces

As we mentioned in the introduction, the Hamiltonian reduction, by the action of U(1) group,
of the eight-dimensional canonical symplectic structure yields the six-dimensional canonical
symplectic structure twisted by the magnetic field of the Dirac monopole (1.4). A particular
consequence of this reduction is the reduction of the energy surface of the oscillator (on
C

2, S4, CP2) to the energy surface of the MIC–Kepler system (on R
3 and AdS3).

In this section we would like to reveal which sort of system arises upon U(1) Hamiltonian
reduction of the four-dimensional mechanical systems on the spaces with U(2)-invariant
Kähler metrics. Particularly, we hope to find, in this way, the four-dimensional origins
of the three-dimensional oscillator and Coulomb systems on Euclidean spaces, spheres and
hyperboloids (which are superintegrable systems).

The Kähler potential of the U(2)-invariant Kähler spaces M, dimC M0 = 2 is (in the
appropriate local coordinates za, a = 1, 2) of the form K(zz̄). Hence, the corresponding
metric reads

gab̄ = ∂2K(zz̄)

∂za∂z̄b
= aδab̄ + a′z̄azb where a = dK ′(y)/dy a′ = a′(y). (2.1)

The particular cases of these spaces are the Euclidean space C
2 (when K = zz̄) and the

complex projective space CP2 (when K = log(1 + zz̄)).
The motion of the particle on M in the U(2)-invariant potential field V is described by

the following Hamiltonian system:

�can = dza ∧ dπa + dz̄a ∧ dπ̄a H = gab̄πaπ̄b + V (zz̄). (2.2)

The Noether constants of motion corresponding to U(2) symmetry are given by the generators

J = izσπ − iπ̄σz̄ J0 = izπ − iz̄π̄ : {J0, Jk} = 0 {Jk, Jl} = 2εklmJm (2.3)

where σ denotes standard Pauli matrices.
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In order to perform the Hamiltonian reduction of this system by the action of the generator
J0, we have to fix its level surface,

J0 = 2s (2.4)

and then factorize the level surface by the action of vector field {J0, }. The resulting six-
dimensional phase space T ∗M red could be parametrized by the following U(1)-invariant
functions:

y = zσz̄ π = zσπ + π̄σz̄

2zz̄
: {y, J0} = {π, J0} = 0. (2.5)

In these coordinates the reduced symplectic structure and the generators of the angular
momentum are given by the expressions

�red = dπ ∧ dy + s
y × dy × dy

|y|3 Jred = J/2 = π × y + s
y
|y| . (2.6)

The reduced Hamiltonian is given by the expression

Hred = 1

a
[yπ2 − b(yπ)2] + s2 1 − by

ay
+ V (y) where y ≡ |y| b = a′(y)

a + ya′(y)
.

(2.7)

Hence, the reduced system is specified by the presence of a Dirac monopole.
Let us perform the canonical transformation (y, π) → (x, p) to the coordinates, where

the metric takes a conformal-flat form:

x = f (y)y π = f p +
df

dy

(yp)

y
y (2.8)

where (
1 +

yf ′(y)

f

)2

= 1 +
ya′(y)

a
⇒

(
d log x

dy

)2

= d log ya(y)

y dy
. (2.9)

Note, that x < 1.
In the new coordinates the Hamiltonian takes the form:

Hred = x2(y)

ya(y)
p2 +

s2

y(a + ya′(y))
+ V (y(x)). (2.10)

In order to express y, a(y), a′(y) via x it is convenient to introduce the function

Ã(y) ≡
∫

(a + ya′(y))yf (y) dy (2.11)

and consider its Legendre transform A(x),

A(x) = xa(y)y − Ã(y). (2.12)

Then, we get immediately

dA(x)

dx
= a(y)y x

d2A

dx2
= y

√
a(a + ya′(y)). (2.13)

By using these expressions, we can present the reduced Hamiltonian system as follows:

Hred = x2

N2
p2 +

s2

(2xN ′(x))2
+ V (y(x)) �red = dp ∧ dx + s

x × dx × dx
|x|3 (2.14)

where

N2(x) ≡ dA

dx
. (2.15)
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The Kähler potential of the initial system is connected with N via equations

dK

dx
= N3(x)

2x2N ′(x)

d log y

dx
= N

2x2N ′(x)
. (2.16)

Let us postulate that the ‘oscillator potential’ on the spaces under consideration acts by
the same formula as on the complex projective spaces (1.2). Then, upon reduction it will read
as follows:

Vosc = ω2∂āKgāb∂bK = ω2 ya2(y)

a(y) + ya′(y)
=

(
ω

N2

2xN ′(x)

)2

. (2.17)

Similarly, we could choose the ‘Coulomb potential’ (1.3), and get its reduced version

VCoulomb = −γ
2xN ′(x)

N2(x)
. (2.18)

In further studies we will need to consider the classical trajectories of the (reduced)
system, in order to check their closedness (closedness of trajectories is the explicit indication
of superintegrability).

For this purpose it is convenient to direct the x3 axis along J, i.e. assume that J = J3.
Upon this choice of coordinate system one has

x3

x
= s

J
. (2.19)

Then, after obvious manipulations, we get

dφ

dt
= 2J

N2
E = J 2 − s2

N2
+

J 2

x2N2

(
dx

dφ

)2

+
s2

(2xN ′(x))2
+ V (x) (2.20)

where

φ = arctan
x1

x2
. (2.21)

From the expression (2.20) we find,∣∣∣∣φJ
∣∣∣∣ =

∫
dx

x
√

(E − Veff)N2 − J 2 + s2
where Veff = V (x) +

s2

(2x dN/dx)2
. (2.22)

2.1. Euclidean space

Let us consider the simplest case, when the reduced configuration space is R
3, i.e. N = √

2x.
In this case the reduced Hamiltonian reads

Hred = p2

2
+

s2

8x2
+ V (x). (2.23)

The trajectories of the system are defined by equations (2.19) and∣∣∣∣φJ
∣∣∣∣ =

∫
dx

x
√

2(E − V )x2 − J 2 + 3s2/4
(2.24)

The Kähler potential and metric of the original four-dimensional system are of the form:

K = (zz̄)4 gab̄ = 4(zz̄)2[(zz̄)δab̄ + 3z̄azb]. (2.25)

Hence, the systems on R
3 are originated on the Kähler conifold3.

3 We thank Dmitry Fursaev for this remark.
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Note that the oscillator and Coulomb potentials (1.2) and (1.3) take, on this conifold, the
following form:

VCoulomb = − γ

(zz̄)2
Vosc = ω2(zz̄)4. (2.26)

Upon reduction they yield the oscillator and Coulomb potentials on R
3!

On the other hand, for the

Veff = s2

x2
+ V (x)

one has ∣∣∣∣φJ
∣∣∣∣ =

∫
dx

x
√

2(E − V )x2 − J 2
(2.27)

so that the form of trajectory, φ(x), is independent of the ‘monopole number’ s.
Hence, the well-defined monopole generalization of the system on R

3 with potential V (x)

reads

Hs = p2

2
+

s2

2x2
+ V (x) �red = dp ∧ dx + s

x × dx × dx
|x|3 . (2.28)

Its four-dimensional origin is formulated as follows:

�can = dza ∧ dπa + dz̄a ∧ dπ̄a H = gābπ̄aπb +
3J 2

0

16(zz̄)4
+ V (zz̄) (2.29)

where gāb is given by (2.25).

3. Sphere and hyperboloid

In this section we consider the particular case of our construction, when the reduced system
(2.14) is formulated on the three-dimensional sphere or (two-sheet) hyperboloid.

For this purpose we choose the following value of N:

N = 2
√

2r0x/(1 + εx2) ε = 1,−1. (3.1)

Here ε = 1 corresponds to the sphere, ε = −1 corresponds to the two-sheet hyperboloid.
The corresponding Hamiltonian is of the form:

Hred = (1 + εx2)2

8r2
0

(
p2 +

s2

4x2

)
+ V (x) +

s2x2

2r2
0 (1 − εx2)2

+
εs2

8r2
0

. (3.2)

Solving equations (2.16) we could find the Kähler space, where system (2.14) originates. It is
defined by the following Kähler potential and metric:

K = εr2
0

2
log(1 + 4ε(zz̄)4) gab̄ = 8r2

0 (zz̄)2

1 + 4ε(zz̄)4

[
(zz̄)δab̄ +

3 − 4ε(zz̄)4

(1 + 4ε(zz̄)4)
z̄azb

]
. (3.3)

Hence, the systems on the sphere and two-sheet hyperboloid also originate on the Kähler
conifolds.

On these conifolds the oscillator and Coulomb potentials (1.2) and (1.3) read as follows:

VCoulomb = − γ√
2r0(zz̄)2

Vosc = 2ω2r2
0 (zz̄)4. (3.4)

Upon reduction to the sphere and hyperboloid they take the form:

VCoulomb = −
√

2γ

r0

1 − εx2

2x
Vosc = ω2r2

0
2x2

(1 − εx2)2
. (3.5)
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These potentials are precisely Coulomb and oscillator potentials on the sphere and hyperboloid
(1.1) written in conformal-flat coordinates. Hence, the oscillator/Coulomb system on the
conifold (3.3) reduces, for J0 = 0, to the oscillator/Coulomb system on the three-dimensional
sphere/hyperboloid. Hence, the initial four-dimensional oscillator and Coulomb systems are
superintegrable systems, when the constant of motion J0 takes the value J0 = 0.

When J0 �= 0, the relation between three- and four-dimensional systems is more
complicated, and needs separate consideration of the oscillator and Coulomb cases.

Let us consider, first, the case of an oscillator. To check the superintegrability, let us
clarify whether the trajectories of the reduced system are closed.

Substituting (3.1) and (3.5) in (2.22), we get∣∣∣∣φJ
∣∣∣∣ =

∫
du√

−4r2
0

(
ω2r2

0 + 2E
)

+
(
8r2

0E + l2
)
u − (s2 + l2)u2

(3.6)

where

l2 = 4(J 2 − s2) 4u = (x + 1/x)2. (3.7)

From this expression we easily get(
x +

1

x

)2

= 8
2r2

0E + J 2 − s2

4J 2 − 3s2


1 +

√√√√1 − 4

(
2r2

0E + r4
0 ω2

)
(4J 2 − 3s2)(

2r2
0E + J 2 − s2

)2 sin 2

√
1 − 3s2

4J 2
|φ|


 .

(3.8)

Hence, trajectories are closed only when√
1 − 3s2

4J 2
is a rational number.

Particularly, trajectories are closed in the ‘ground state’, i.e. for s = J . In this case they
belong to the ‘equatorial plane’, x3 = x. Hence, the Hamiltonian system (2.14) on a
sphere/hyperboloid with the oscillator potential is not superintegrable for arbitrary value
of monopole number s.

However, one can get the monopole generalization of an oscillator whose trajectories are
closed for any s, choosing the potential

V s
osc = Vosc +

3s2

4x2(dN/dx)2
. (3.9)

In this case the trajectories are given by the expression(
x +

1

x

)2

= 2
2r2

0E + J 2 − s2

2J 2


1 +

√√√√1 − 16J 2r2
0

2E + ω2r2
0(

2r2
0E + J 2 − s2

)2 sin 2|φ|

 (3.10)

i.e. they are closed for any s.
Hence, the superintegrable generalization of the Higgs oscillator specified by the presence

of a Dirac monopole is defined by the Hamiltonian

Hε
MIC−osc = (1 + εx2)2

8r2
0

(
p2 +

s2

x2

)
+

(
ω2r2

0 +
s2

4r2
0

)
2x2

(1 − εx2)2
ε = ±1 (3.11)

where ε = 1 corresponds to the sphere and ε = −1 to the hyperboloid.
It originates in the Hamiltonian given by the expression

H = gābπ̄aπb +
3J 2

0

16R(zz̄)
+ ω2Kag

ab̄Kb̄ R = 32r2
0 (zz̄)4

(1 + 4ε(zz̄)4)2
. (3.12)

There is an important difference of the above reduced oscillator from that on the R
3.
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Namely, the four-dimensional system with ‘frequency’ ω yields the three-dimensional
oscillator with ‘frequency’ dependent on the ‘monopole number’ s

ωs =
√

ω2 +
s2

4r4
0

while the frequency of the oscillator reduced to R
3 is independent of s.

Now, let us consider the system with Coulomb potential (1.3) on the conifold with Kähler
structure (3.3). After Hamiltonian reduction it yields the three-dimensional system with
Hamiltonian (3.2) where V = VCoulomb (3.5).

On the level surface s = 0 (i.e. in the absence of a Dirac monopole), the reduced system
coincides with the standard Coulomb system on the sphere/hyperboloid. Therefore it is
superintegrable. On the level surface s �= 0 (i.e. in the presence of a monopole) the potential
of the reduced system is the superposition of the Coulomb potential and that of the oscillator,
proportional to s2

/
r4

0 ! So, it is not surprising that the expression for trajectories of the reduced
system φ = φ(r) is given by the elliptic integral. . . .

On the other hand, there are superintegrable MIC–Kepler systems on the sphere and
hyperboloid, given by the Hamiltonian

Hε
MIC = (1 + εx2)2

8r2
0

(
p2 +

s2

x2

)
− γ

r0

1 − εx2

2x
ε = ±1 (3.13)

where ε = 1 corresponds to the sphere [13] and ε = −1 to the hyperboloid [12].
To recover this system, we can try to modify the initial Coulomb system, transiting to the

non-Kähler metric, as in the case of an oscillator (compare with (3.12)),

H = gābπ̄aπb +
3J 2

0

16R(zz̄)
+

γ√
Kagab̄Kb̄

R = 32r2
0 (zz̄)4

(1 + ε(zz̄)4)2
. (3.14)

However, in that case the reduced Hamiltonian is given by that of the MIC–Kepler system
(3.11) with additional oscillator potential. So even the modified Coulomb system is not exactly
solvable for any value of J0.

We have found the four-dimensional oscillator and Coulomb systems on appropriate
Kähler conifolds, which result, after Hamiltonian reduction, in the oscillator and Coulomb
systems on a three-dimensional sphere and a two-sheet hyperboloid. The appearance, in the
reduced system, of the Dirac monopole, breaks the superintegrability of the system. However,
the superintegrability of the oscillator system, as opposed to the Coulomb system, could be
restored by the transition to the non-Kähler metric.

4. Family of oscillator systems

The results of the previous section could easily be extended to the Kähler space whose metric
is defined by the potential

K = εr2
0

2
log(1 + 4ε(zz̄)n) ε = ±1 n > 0. (4.1)

For n = 1 the potential (4.1) defines the Fubini–Studi metric of the two-dimensional
complex projective space CP2 (for ε = 1) and its non-compact version, the four-dimensional
Lobachewski space L2 (for ε = −1). These spaces are of constant curvature, and have the
isometry group SU(3) for ε = 1 and SU(1.2) for ε = −1.

The case n = 4 was considered in the previous section. The system on such spaces
results, after Hamiltonian reduction, in those on the sphere (ε = 1) or two-sheet hyperboloid
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ε = −1 (which have constant curvature, and the isometry groups SO(4) and SO(1.3),
respectively). For any other n both initial and reduced spaces have non-constant curvature and
conic singularity.

The Hamiltonian systems on the spaces with Kähler potential (4.1) result, after reduction,
in three-dimensional systems (2.14), with

N2 = 2nr2
0

x
√

n(
1 + εx

√
n
)2 . (4.2)

Hence, the metric of the reduced configuration space is given by the expression

ds2 = 2nr2
0 x

√
n−2(dx)2(

1 + εx
√

n
)2 (4.3)

so that for n �= 4 it has a conifold structure4.
The oscillator potential (2.17) is as follows:

Vosc = 2r2
0 ω2(zz̄)n. (4.4)

It reduces to the following form:

V red
osc = 2r2

0 ω2 x
√

n(
1 − εx

√
n
)2 . (4.5)

The trajectories of the reduced oscillator are given by the expression∣∣∣∣φJ
∣∣∣∣ =

∫
du√

−nr2
0

(
r2

0 ω2 + 2E
)

+
(
2nr2

0E + l2
)
u − (

4
n
s2 + l2

)
u2

(4.6)

where

l2 = 4(J 2 − s2) 4u = (
x

√
n/2 + 1/x

√
n/2

)2
. (4.7)

From this expression we easily get(
x

√
n/2 + x−√

n/2
)2 = nr2

0E + 2(J 2 − s2)

2(J 2 − s2(1 − 1/n))

×

1 +

√√√√1 − 4nr2
0

(
2E + r2

0 ω2
)
(J 2 − s2(1 − 1/n))(

Er2
0 + (J 2 − s2)

)2 sin 2

√
1 − (n − 1)s2

nJ 2
|φ|


 .

(4.8)

Hence, trajectories are closed when the following condition holds:√
1 − (n − 1)s2

nJ 2
is a rational number.

Therefore, trajectories are closed for any s only when n = 1, i.e. on the complex projective
space CP2 (for ε = 1) and on its non-compact version, four-dimensional Lobachewski
space L2 = SU(1.2)/U(1) × SU(2). In this case the potential takes a quite simple form,
V = 2ω2r2

0 zz̄. The closedness of trajectories are due to the hidden symmetries of the system,
given by the expressions [3]

I = J+σJ−
2r2

0

+ 2r2
0 ω2zσz̄ J +

a = πa + ε(π̄ z̄)z̄a J− = J̄ + (4.9)

4 In the vicinity of a singularity this metric could be presented as follows: ds2 = dR2 + R2 d�̄2, where R =
r
√

n/2/
√

n/2, d�̄2 = (n/2)2 d�2 where d�2 is a metric on S2. Hence, the solid angle around the singularity is equal
to nπ , instead of 4π (D Fursaev).
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where J±
a are the translation generators. The reduced Hamiltonian is of the form:

Hred = x(1 + εx)2p2

2r2
0

+ s2 (1 + εx)4

2r2
0 x(1 − εx)2

+
2r2

0 ω2x

(1 − εx)2
. (4.10)

Fixing the energy surface H = Eosc of the reduced system, we can transform it into the
MIC–Kepler system on a hyperboloid, given by the Hamiltonian (3.11).

For n �= 1, we could get the superintegrable oscillator with monopole, choosing the
potential

V s
osc = Vosc +

(n − 1)

n

s2

x2(dN/dx)2
. (4.11)

In this case the Hamiltonian of the reduced system reads

H =
(
1 + εx

√
n
)2

2nr2
0 x

√
n−2

p2 + s2

(
1 + εx

√
n
)4

2nr2
0 x

√
n
(
1 − εx

√
n
)2 + 2r2

0 ω2 x
√

n(
1 − εx

√
n
)2 (4.12)

while the trajectories are given by equation

(
x

√
n/2 + x−√

n/2)2 = nr2
0E + 2(J 2 − s2)

J 2

(
1 +

√
1 − 4nr2

0

(2E + r2
0 ω2)J 2

nr2
0E + 2(J 2 − s2)2

sin 2|φ|
)

.

(4.13)

This superintegrable oscillator with monopole originates in the four-dimensional system with
Hamiltonian

H = gābπ̄aπb +
(n − 1)J 2

0

4nR(zz̄)
+ 2r2

0 ω2(zz̄)n R = 2n2r2
0 (zz̄)4

(1 + 4ε(zz̄)n)2
(4.14)

where gāb is defined by the Kähler potential (4.1).

5. Conclusion

We considered the reduction of the mechanical systems on four-dimensional Kähler spaces with
U(2) isometry to the three-dimensional systems, paying special attention to the ‘oscillator’ and
‘Coulomb’ systems, defining their potentials by expressions (1.2) and (1.3), respectively. From
a previous study [3] it was known that such an ‘oscillator’ potential defines the well-defined
superintegrable system on CPn, and is distinguished with respect to supersymmetrization
as well. Since the Hamiltonian reduction by the action of the U(1) group generates, in
the resulting three-dimensional system, the magnetic field of a Dirac monopole, we hope
to find, in this way, the superintegrable generalizations of oscillator and Coulomb systems
on curved spaces, specified by the presence of a Dirac monopole. Particularly, we found
the four-dimensional Kähler spaces (with conic singularities) where the three-dimensional
oscillator and Coulomb systems on the R

3, S3, H
3 originate, and establish that the original

oscillator and Coulomb potentials are, indeed, given by (1.2) and (1.3). However, when these
four-dimensional systems result in the three-dimensional system specified by the presence
of Dirac monopoles, their trajectories become unclosed. In other words, the monopole field
breaks superintegrability of the system. In the case of an oscillator, transiting from the
Kähler metric to the appropriate non-Kähler one, we can restore superintegrability of the
systems (both the initial and the reduced one), but we cannot do the same for the Coulomb
system. We also extended these considerations for some parametric family of Käher spaces
including the previous ones as a particular case. We found that the unique representative of
this family, where the oscillator is superintegrable, is the complex projective space CP2 (and
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its non-compact version, Lobachewski space L2 = SU(2.1)/SU(2) × U(1). The energy
surface of the oscillator on this four-dimensional space leads to the energy surface of the
MIC–Kepler system on a three-dimensional hyperboloid. On the other hand, the Kähler
configuration space is distinguished from the viewpoint of supersymmetry. Particularly, the
above-considered systems could be supersymmetrized precisely as the oscillator on CPN [3].
So, the requirement of superintegrability yields the breaking of this supersymmetry in the
presence of the monopole field.

Finally, let us note that while previous superintegrable generalizations of oscillator systems
were formulated on constant curvature spaces, the superintegrable oscillators constructed in
the present paper could have configuration spaces with non-constant curvature and conic
singularities.
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